Probing Nanoscale Heat Transport in Liquid Environments—Contact and Non-Contact Immersion Scanning Thermal Microscopy (iSThM)

Operation of Scanning Thermal Microscopy (SThM) [1] in liquid environment probing thermal phenomena with nanoscale resolution could open unique opportunities for studies of biological materials, processes in the rechargeable energy storage and catalysis. Until recently such SThM operation would be deemed fully impossible, due to dominating heat dissipation from the heated probe into the surrounding liquid that thought to drastically deteriorate both the sensitivity of the probe and its spatial resolution. Nevertheless, Tovee and Kolosov [2] showed that such immersions SThM, or iSThM, is not only possible for the certain widely used type of the probe (Kelvin Nanotechnology, Scotland), but also opens the possibility to make nanoscale mapping of the heat transport with the near-field operation of SThM. Here we show that the presence of liquid provides highly stable thermal contact between the probe tip and the sample eliminating one of the major drawbacks of the ambient or vacuum SThM’s – variability of such contact. iSThM can effectively observe the semiconductor devices and 2D materials with the resolution of few tens of nanometres, providing new tool for exploring thermal effects of chemical reactions and biological processes with nanoscale resolution. Using finite element modeling analysis we show that selecting suitable thermal conductivity of the liquid allows to to significantly enhance contrast of iSThM for the particular material. We also experimentally demonstrate that by applying of the ultrasonic vibration to the probe and by detecting a shear response of the probe it is possible to achieve near – non-contact iSThM paving the way for efficient zero-damage nanoscale thermal probing.

Kolosov, O. V., Spiece, J., & Robinson, B. J. (2017). Probing Nanoscale Heat Transport in Liquid Environments—Contact and Non-Contact Immersion Scanning Thermal Microscopy (iSThM).

Share this post

Connect with us
Stay informed of our latest innovations, sign up to our newsletter.

News & Events

KNT exhibiting at SPIE Photonics West 2024

We are excited to be exhibiting at SPIE Photonics West 2024.

KNT can be found at the UK Pavilion Booth 5017, at the Moscone Center on the 30th of January to the 2nd of February.

Please stop by our booth to see what is new in nanofabrication and quantum device fabrication.

Read More »
News & Events

DFB InP Process Scaled to 150 mm (6”) 

Kelvin Nanotechnology (KNT) has developed a Distributed Feedback (DFB) grating process on 150 mm (6”) InP platform. The work was done in collaboration with the James Watt Nanofabrication Centre (JWNC) and IQE plc (Cardiff, Wales).

Read More »

How can we help you to bring your project together?