Scientific-Publications-Feb19

Stand-Alone Vacuum Cell for Compact Ultracold Quantum Technologies

Compact vacuum systems are key enabling components for cold atom technologies, facilitating extremely accurate sensing applications. There has been important progress toward a truly portable compact vacuum system; however, size, weight, and power consumption can be prohibitively large, optical access may be limited, and active pumping is often required. Here, we present a centiliter-scale ceramic vacuum chamber with He-impermeable viewports and an integrated diffractive optic, enabling robust laser cooling with light from a single polarization-maintaining fiber. A cold atom demonstrator based on the vacuum cell delivers 107 laser-cooled 87Rb atoms per second, using minimal electrical power. With continuous Rb gas emission, active pumping yields a 10−7 mbar equilibrium pressure, and passive pumping stabilizes to 3×10−6 mbar with a 17 day time constant. A vacuum cell, with no Rb dispensing and only passive pumping, has currently kept a similar pressure for more than 500 days. The passive-pumping vacuum lifetime is several years, which is estimated from short-term He throughput with many foreseeable improvements. This technology enables wide-ranging mobilization of ultracold quantum metrology.

Oliver S. Burrow, Paul F. Osborn, Edward Boughton, Francesco Mirando, David P. Burt, Paul F. Griffin, Aidan S. Arnold, Erling Riis

https://aip.scitation.org/doi/10.1063/1.5097862

Share this post

Connect with us
Stay informed of our latest innovations, sign up to our newsletter.

How can we help you to bring your project together?