Thermal resistance measurement of In3SbTe2 nanowires

The thermal resistance along the thickness of In3SbTe2 crystalline nanowires was measured using the scanning thermal microscopy in 3ω mode. The nanowires were grown by metal organic vapor deposition, exploiting the VLS mechanism induced by Au metal‐catalyst nanoparticles and harvested on a SiO2/Si substrate. Two nanowires with different thickness (13 and 23 nm) were investigated. The thermal resistance of the nanowires was determined using two different approaches; the first one exploits the experimental data, whereas the second one is more sophisticated, since it involves a minimization procedure. Both methods led to comparable values of the thermal resistance along the transverse direction (thickness) of the nanowire. The obtained results were explained starting from the mean free path of phonons calculated in the In3SbTe2 bulk.

Battaglia, J. L., Saci, A., De, I., Cecchini, R., Selmo, S., Fanciulli, M., … & Longo, M. (2016). Thermal resistance measurement of In3SbTe2 nanowires. physica status solidi (a).

Share this post

Connect with us
Stay informed of our latest innovations, sign up to our newsletter.

News & Events

DFB InP Process Scaled to 150 mm (6”) 

Kelvin Nanotechnology (KNT) has developed a Distributed Feedback (DFB) grating process on 150 mm (6”) InP platform. The work was done in collaboration with the James Watt Nanofabrication Centre (JWNC) and IQE plc (Cardiff, Wales).

Read More »

How can we help you to bring your project together?